

Todd Z. Osborne^{1,2}, Lisa G. Chambers³, Lorae T. Simpson^{1,4}

¹Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL

²Wetland Biogeochemistry Laboratory, University of Florida, Gainesville, FL

³Soil and Water Research Laboratory, St. Louis University, St. Louis, MS

⁴Smithsonian Environmental Research Center, Ft. Pierce, FL

Wetland Biogeochemistry Laboratory

http://www.raesidecartoon.com/blog/wp-content/uploads/2012/02/sealevels.gif

Motivating Questions

- How will saline transgression events in fresh and brackish water systems alter C dynamics?
- How will increasing salinity affect soil stability and nutrient cycling along the freshwater ecotone?
- How will increasing salinity affect vegetation communities?

Ecological Effects of SLR

- ➤ Alteration of biogeochemical processes➤ C (N,P,S)
- > Shifts in Vegetation Community Structure
 - > displacement of salt intolerant species
- > Destabilization of organic soils
 - biotic processes
 - >abiotic processes

Seawater Effects on Soil Microbes

"Salt Effect"

"Sulfate Effect"

	Electron	C End-
	Acceptor	Product
Decreasing energy yield	O_2	CO ₂
	NO ₃ - Mn ⁴⁺	CO ₂
	Mn ⁴⁺	CO ₂
	Fe ³⁺	CO ₂
	SO ₄ ²⁻	CO ₂
	CO ₂	CH_4

 Osmotic stress, cell lysis, reduced metabolic & enzyme activities Sulfate reducing bacteria replace methanogens in anaerobic respiration

Chambers, L.G., T.Z. Osborne, and K.R. Reddy. 2011. Soil Sci. Soc. Am. J. 75(5) 1-8

Chambers, L.G, T.Z. Osborne & K.R. Reddy. 2013. Biogeochemistry

Observations

- Freshwater microbial populations respond quickly (~2 weeks) to salinity pulses
- Low-salinity (3.5 ppt) induced more C mineralization (+17%) than freshwater and higher salinity treatments (over time)
- Landward migration of seawater will have a significant effect on the <u>C balance</u> of coastal wetlands

Soil Nutrients and Stability

SAR = sodium adsorption ratio = exchangeable [Na] / (0.5[Ca] + 0.5[Mg]) $^{0.5}$

EC = electrical conductivity = dS m⁻¹

ESP = Exchangeable Sodium Percentage = $\frac{\text{exchangeable sodium (cmol}_{\underline{c}} \text{ kg}^{-1})}{\text{cation exchange capacity (cmol}_{\underline{c}} \text{ kg}^{-1})}$ X100

Intact Soil Core Flux Study LNWR

200

150

100

50

-50 -

TP (mg kg-1)

change in water column concentration

Osborne and Newman 2007

Soil Collar Study WCA-3A

30 - 25 - 20 - 15 - 10 - 5 - 0 - 0 10 20 30 40

Salinity (ppt)

*C120 1200 4200 1200 3200 1200 4200 1200 1200 1200

IS-S

■ IS-D

Rozin and Osborne in review

soil organic matter

- + calcium cations
- Less abundant cations (Al, Fe, Mg, K)

salt water transgression
Cation Exchange

•

net surface charge + dispersion

Observations

- Low level increases in salinity catalyze DOC flux from organic soils and detrital material
- K₂CO₃ increases extraction of P from organic soils and detritus (likely by precipitating CaCO₃ and removal of P from FeOx surfaces)
- Sodium induced dispersion may be a significant factor in peat collapse

Parting thoughts

- Protection of organic soils is critical to nutrient immobilization and downstream water quality
- Saltwater intrusion can dramatically destabilize freshwater wetland soils by increasing both physical processes (dispersion) and biological processes (oxidation)
- Increased salinity induces vegetation shifts to favor salt tolerant species- but may also induce landscape change
- These effects will likely become more significant as climate change/ SLR proceeds

